
JR.WEBDEVELOPER
CERTIFICATIONKIT

Level 1-1—Unlocking the Power of Code ToChange YourWorld 6
Everyone Can Code, Including You! 7
No One Gets Left Behind. 7
Learn to Think Like A Coder. 8
Javascript is everywhere. 9
The Back-end 11
Developer Tools: IDEs and editors 12
Developer Tools: Developer Console 12
Variables 13
Basic Data Types 13
Reference Data Types 14
Let’s Review! 15
Preview Next Lesson 16
Your Turn Now. 16

Homework Assignment—Building Confidence Through Practice 16
Homework #1 16
Homework #2 17
Homework #3 18

You did it! 18
Level 1-2: Building Your Programming Fundamentals with Tic-Tac-Toe 20

Art vs. Science 21
The Science of Coding 21
The Art of Coding 21
Bringing Art and Science Together 22
Why This Matters for Developers 22
More about variables 23
Declaring Variables with let 24
Initializing Variables with let 24
Declaring and Initializing in One Step 25
Understanding const 25
Use Cases 26
Best Practices 26
You did it! 26
Introduction to var 27
UnderstandingWhere Your Variables Can Be Used (Introducing "Scope") 27
Redeclaration with var 28

Understanding Redeclaration with let 28
Understanding Hoisting (Moving Variables To The Top of the Scope) 29
Hoisting with var vs. let and const 30
Why This Matters 31
Understanding Functions in JavaScript with Simple Examples 31

Example #1: A Function to Make a Sandwich 31
Defining Functions 31
Using the makeSandwich Function 33

Example 2: A Function to Calculate the Area of a Rectangle 33
Defining a calculateArea Function 33
Using the Function 34
The console Object and the log Method 34
The console Object 34
The log Method 34
How console.log Relates to Defining Functions 35
Why This Matters 36
Introducing Hoisting and Function Scope with Simple Functions 36
Do You RememberWhat Hoisting Is? 36
A Function to Make Co�ee 37

Example: A Function to Calculate Discount 37
The var Quirk 38
Arrays and Indexed Collections 39
Loops 40
Using a for Loop 41
Understanding the for Loop and Array Length 41
How the LoopWorks 42
Introduction to Comparison 43
The Less Than Operator in Action 43
What’s Going On Here? 43
Connecting the Dots 44
From < to Equality Comparisons 44
Loose Equality (==) 44
What’s Happening Here? 45
Strict Equality (===) 45
What’s Happening Here? 45
Why It Matters 45

Practical Example: Checking User Input 46
Bringing It All Together: The .every Array Method 47
What is the .every Method? 47

Example: Checking if All Numbers are Positive 47
How It Works 48
Why Use .every? 48

Practical Example: Validating User Input 48

How It Works 49
Connecting the Dots 49
You’ve Come a LongWay: Let’s Make A Tic-Tac-Toe Game 50
HowOther Developers Did It 50

Example 1: A Detailed Solution on GeeksforGeeks 50
Example 2: A Simpler Approach onMedium 51

What These Solutions Have in Common 52
Unlocking the if Statement Superpower 52
Understanding if Statements 52
The Basics of if Statements 52

Example: Checking a Number 52
Why if Statements Are So Powerful 53
Connecting The Dots 53
You’re Ready! 54
Design Thinking 54

We Can Code This! 54
RepresentingWinning Patterns 55

Example: Vertical Win in the Middle 55
Example: Diagonal Win fromUpper-Right to Lower-Left 56

Putting It All Together 57
Remember the for loop? 59
Let's Walk Through the Code Together, Line by Line 61
1. Function Definition 61
2. DefineWinning Combinations 61
3. Loop Through EachWinning Combination 62
4. Accessing the Current Combination 62
5. Checking If the Player Occupies All Three Spots 63
6. Return true if a Winning Combination is Found 63
7. End of the Loop and Return `false` 63
8. Example Board State and Function Call 64
Wow! You've Come So Far 64
What You’ve Accomplished 64
Keep Going 65
Homework: Grow Your Superpowers 65

1. Create Your Own Tic-Tac-Toe Board 65
2. Check for aWinner 66
3. Experiment with NewWinning Combinations 66
4. Reflection 66
Extra Challenge: Make It Interactive 67

What’s Next? 67

Level 1-1—Unlocking the Power
of Code ToChange YourWorld
Welcome developers to the Code Accelerator JuniorWebDeveloper
Certification kit!

Code Accelerator focuses onmaking beginners comfortable and confident
with computer science fundamentals to help you build up a strong
understanding of how web applications function on both the inside and
outside, so that you can:

● Improve your skills outside of the pressure of a work environment
● Enhance your career opportunities through your improved skills
● Reduce the frustration and anxiety associated with gaps in

understanding

You're in the right place if you've ever felt like the world of coding was a
closed door because of a lack of experience. We're going to help you open
that door!

Everyone Can Code, Including You!
Code Accelerator knows that everyone, from passionate beginners to
seasoned thinkers, can unlock this door—with the right key.

And that key is understanding—really understanding the code you're looking
at—and not just copying, pasting, andmemorizing code.

Code connects to everything we do in the world.

Code touches almost every aspect of our modern lives—from the apps that
wake us up, to the cars that drive us home.

And learning the fundamentals of coding is not just for web developers and
computer scientists anymore; it's for anyone with the curiosity to learn.

That's why nomatter who you are or where you've started, we ask you to
build a foundation with us on the basics and fundamentals, as we work our
way up step by step with other developers in the community.

NoOne Gets Left Behind.
Code Accelerator expects you to collaborate with other developers to
strengthen everyone's understanding.

No one is left behind.

Just like in the movie ‘The Karate Kid’ where simple, everyday actions build
up confidence and power, Code Accelerator’s step by step approach builds
your coding journey one computer science concept at a time using ways of
thinking about things that can be familiar to everyone.

In the Code Accelerator camp, understanding both the front and back end of
applications makes you an active participant, a creator, and an innovator in
the tech space whether you're a back-end web developer, UX designer, team
lead, or startup founder.

You can unlock Code Accelerator certifications only when you're ready to be
prepared to think, to solve problems, and to design solutions.

And each of us brings a unique perspective to coding. Code Accelerator is
designed to start from whatever knowledge point you're at right now.

Hands-on projects, supportive mentors, and a community of peers, can help
you find the confidence to not only understand coding challenges, but to
excel at them.

Learn to Think Like A Coder.
Code Accelerator doesn’t just help you learn how to copy and paste code.

Code Accelerator helps you learn how to think like a confident coder.

As wemove through today's Level 1-1 session, remember that every expert
was once a beginner and every teacher was once a student.

Your journey might have started with a simple line of code, but where it goes
is up to you—and that's limitless.

The Level 1-1 session is an overview of what we’ll study more closely in the
Level 1-2 learning session named “Building Your Programming
Fundamentals with Tic-Tac-Toe”, where we’ll build or rebuild your
fundamental understandings of common computer science concepts like
variables, functions, and data types.

Code Accelerator certification kits are especially designed to teach you the
things you need to learn in the order you need to learn them so that you grow
into a more powerful understanding of web development and web
applications.

Level 1-3’s learning session will take a detour to cover HTML and CSS to
create and style the web pages that will support our web applications.

Having spent the proper time to build up your understanding of the
foundation of our web applications, Level 1-4 unlocks evenmore of your
JavaScript superpowers, especially handling events andmanipulating the
DOMwithin your HTML structure.

By the end of Level 1-5 (“Understanding Reactive Frameworks”) & Level 1-6
(“UnderstandingWebsockets and Real-Time Connections”) you'll be using
the understanding that you've built up thus far to wrap your mind around how
front-end and back-end tech stacks work together and are used everyday to
fuel the apps that show up in our everyday lives.

There are evenmore cool things we can learn from there, but before we get
ahead of ourselves, we're going to start today's learning session:
“Unlocking the Power of Code To Change Your World”.

Javascript is everywhere.
As of July 2024, ZipRecruiter lists the average “JavaScript Developer” salary
as $106,583.

This shows just how important Javascript skills are when it comes to
building andmaintaining anything that lives on the web.

Support from big companies like Facebook and Google has made
JavaScript the most popular language on the Internet.

JavaScript is also the most widely used client-side coding language.

So, what exactly is a client-side code?

Client-side code is just the code that is stored and running right now on your
home computer or in your hand on your mobile device!

Javascript is everywhere in our everyday lives, and that's why every single
internet browser on the planet has a built-in way to process JavaScript!

Browsers use special software called a JavaScript engine to read and use
JavaScript code to power the websites that make our lives easier. There are
di�erent JavaScript engines for every browser; V8 for Chrome, Gecko for
Firefox, and JavaScriptCore for Safari.

V8 (logo left), Gecko (logo center) and JavascriptCore (right) are popular Javascript engines.

The Front-end
JavaScript, CSS (Cascading Style Sheets), and HTML (Hypertext Markup
Language) files are really just text files inside of folders on a computer.

And those code files stack up layer by layer to display everything that you
see in your web app. Everything that appears in a web browser is referred to
as happening on the client side.

Web developers call this client-side mix of Javascript, HTML, and CSS files
the front-end of our web applications.

JavaScript
▲
|

CSS
▲
|

HTML
▲
|

Machine Language (Assembly)

1. HTML rests at the bottom of the stack, creating the basic structure of
our web application.

2. CSS sits on top of the HTML. It adds style to the HTML structure by
adding colors, layouts, and animations that communicate importance
to human users.

3. Javascript floats at the top of the stack, patiently waiting to instantly
respond to user behavior and updated information that need to be sent
to both the CSS and HTML layers.

This is how the front-end works for browsers on the Internet.

The Back-end
From its birth in 1995 up until 2008, JavaScript remained trapped inside the
client-side of the browser.

But in 2009, a software named Node.js was released that broke JavaScript
out from the front-end!

Node.js is a C++ desktop application that allows us to use Javascript to
quickly build web servers and work with databases.

The term server describes computers that run software like Node.js to
communicate with other computers and databases and send .js, .html and
.css files to and from your browser.

The combination of files and folders that sit on servers andmake themwork
is called the back-end, because these files quietly work in the background
to make our web applications do all the wonderful things they do.

Now that developers like us have access to Node.js, we can use JavaScript
to create both the front-end and the back-end for powerful applications that
live on theWorld WideWeb.

Developer Tools: IDEs and editors
Integrated development environments like Visual Studio Code are software
applications that help programmers develop codemore e�ectively and
quickly.

Visual Studio Code (logo left) and Notepad++ (logo right) are important tools for any junior web developer.

Lightweight code editors like Notepad++ are simple text editors with less
features than IDEs.

While IDEs are project-focused, lightweight editors are faster for single-file
tasks.

The key is finding the right balance between power and simplicity for e�cient
coding.

Developer Tools: Developer Console
The developer console is a super useful tool used inside your browser that
lets you play around and see what happens when you change parts of
websites.

You can open it by pressing Ctrl+Shift+J onWindows or Cmd+Option+J on
Mac.

You'll be using this console to try out small bits of code, called code
snippets. It's great because you can see your code working in real-time
without a�ecting anything big—just like practicing in a sandbox!

JavaScript

JavaScript

JavaScript

Variables
In Javascript, information is usually held in containers. These data
containers are called variables.

The keywords let and const are part of the syntax that allow us to declare
and initialize a variable.

Keywords are the words in your code that are part of the syntax of the
programming language.

The term “syntax of a programming language” just means the specific things
youmust type to correctly communicatewith the Javascript engine.

To declare (create) a variable:

// declare a variable namedmyBootcamp
let myBootcamp;

To initialize a variable you assign a value.

// initialize a variable namedmyBootcamp
let myBootcamp = "Code Accelerator";

Basic Data Types
The seven basic (or primitive) types of data you can assign to variables are:

let myVariable;
myVariable = "Code Accelerator"; // String (text)
myVariable = 2024; // Number
myVariable = BigInt(2^53); // BigInt (for big numbers)
myVariable = true; // Boolean (true or false)
myVariable = Symbol("Code Accelerator"); // Symbol

JavaScript

myVariable = null; // null(empty value)
myVariable = ""; // Undefined (no value yet)

These primitive data types are used to create other data structures in
JavaScript.

Reference Data Types
Javascript also has special data structures called reference data types,
which include objects, arrays, and functions.

An array is a way of storing an organized list of items inside of one variable.
Arrays help us deal with multiple pieces of data that belong to one larger
container.

An object in JavaScript is just like any object in the real world. It has
properties (attributes or qualities) and actions (functions).

// initialize an array
const myArray = ["Javascript", "HTML", "CSS"];

// initialize an object
const myEyes = { vision: "20/20" };

// declare a function
function lookAtSomething (subject) {
return subject;

};

For example: my eyes (object) can look at something (function) with 20/20 vision (quality).

And just like in the real world, objects are everywhere in JavaScript, so if
you’ve ever used Javascript you've probably also used objects already.

When a function lives inside of an object, developers call it amethod.

JavaScript

When a variable lives inside of an object, developers call it a property.

The properties andmethods (variables and functions) that live in an object
should be separated by commas.

// initialize an object
const myEyes = {

vision: "20/20",
lookAtSomething: function (subject) {

return subject;
}

};

// object property
console.log(myEyes.vision) // Output: "20/20"

// object method
console.log(myEyes.lookAtSomething("thing")) // Output: "thing"

Let’s Review!
As we wrap up today’s session, let’s quickly review the key concepts we
covered:

1. Introduction to JavaScript: We discussed why JavaScript is a
fundamental language in web development and how it’s used both on
the front-end (in the browser) and back-end (with Node.js).

2. The Front-End Stack: You learned about the layers of the front-end
stack—HTML for structure, CSS for styling, and JavaScript for
interactivity.

3. Developer Tools: We touched on the importance of tools like IDEs
and code editors, as well as the developer console, which is essential

for testing and debugging your code.

4. Variables andData Types: We explored the concept of variables as
containers for data and discussed the basic (primitive) data types like
strings, numbers, and booleans, as well as reference data types like
arrays and objects.

This foundation sets you up perfectly for our next session, where we’ll dive
deeper into the programming fundamentals that will power your journey
through the world of coding.

Preview Next Lesson
In our next session, “Building Your Programming Fundamentals with
Tic-Tac-Toe,” we’ll explore essential concepts like functions, loops, and
conditionals—tools that will allow you to start building your own web
applications. We’ll also start looking at how these fundamentals come
together to solve real-world problems.

Your Turn Now.
Homework Assignment—Building Confidence Through Practice

In line with Code Accelerator’s mission to build your confidence and
understanding step by step, here’s your first homework assignment:

Homework #1

Object Creation:

○ Write a simple JavaScript object that represents something in
your everyday life (e.g., your phone, a favorite book, or even your
co�eemug). Your object should have at least two properties (like
brand, size, or flavor) and onemethod (like makeCall, readBook,
or sipCo�ee).

JavaScript

JavaScript

// Example:
const co�eeMug = {
color: "blue",
size: "large",
sipCo�ee: function() {
console.log("Sipping co�ee...");

}
};

console.log(co�eeMug.color); // Output: "blue"
co�eeMug.sipCo�ee(); // Output: "Sipping co�ee..."

Homework #2

Data Type Exploration:

○ Use the developer console to declare variables of di�erent data
types—string, number, boolean, etc.

○ HINT: use typeof in front of a variable or piece of data.
○ EXTRACREDIT: Try adding two numbers or two strings.

// Example:
let age = 25;
let isAdult = age > 18;
console.log(isAdult); // Output: true
console.log(typeof age); // Output: ??
console.log(typeof isAdult); // Output: ??
let greeting = "Hello";
let to = "World";
let combinedGreeting = greeting + " " + to; console.log(combinedGreeting); //
Output: "Hello World"

Homework #3

Sharing and Feedback:

○ Once you’ve completed the exercises, share your code in our
online forum. Don’t worry if you get stuck—post your questions,
and either I or your peers will be there to help you out!

You did it!
As we end today’s session, I want to remind you that coding is more than just
a technical skill—it’s a way to change your world. Every line of code you write
brings you closer to creating something meaningful, whether it’s a simple
web page or a complex application.

Remember, every expert coder started where you are right now—with
curiosity and a willingness to learn. The challenges you face today will
become the building blocks of your success tomorrow.

So keep pushing forward, keep experimenting, andmost importantly, keep
believing in your ability to learn and grow.

Your journey in coding is just beginning, and I’m excited to see where it takes
you. The skills you’re developing here can open doors to new opportunities,
so take pride in each step you take. The world of code is vast and full of
possibilities—let’s unlock those possibilities together.

JR.WEBDEVELOPER
CERTIFICATIONKIT

Level 1-2: Building Your
Programming Fundamentals
with Tic-Tac-Toe
In this lesson, we will use the Tic-Tac-Toe game to explore fundamental
JavaScript concepts. Through this, we'll not only learn a little about how
writing JavaScript games works, but also deepen our understanding of core
programming principles.

By the end of this lesson, you’ll have a better understanding of how to
structure your code e�ectively while embracing the creativity that comes
with coding.

Art vs. Science
The debate of whether coding is an art or a science rages on, but the truth is,
it's both. Coding, like science, requires logic, precision, and a strong
understanding of fundamentals.

However, like art, coding also requires creativity, intuition, and personal
expression. The beauty of coding lies in its ability to combine elements,
allowing developers to solve problems in unique and innovative ways.

The Science of Coding
● Core Understanding: Just as scientists rely on established theories

and principles, coders rely on algorithms, data structures, and
programming paradigms to create functional and e�cient software.

● Logic: Coding requires a deep understanding of syntax, logic, and
computational thinking. Much like in science, a small mistake in code
can lead to significant errors, making attention to detail crucial.

● Predictability: When you write code, you're essentially giving a set of
instructions to a computer which, when executed correctly, produces
predictable outcomes—just like conducting a scientific experiment.

The Art of Coding
● Creative Problem-Solving: While coding requires logical thinking, it

also allows for a wide range of creative solutions. There’s no one
"correct" way to solve a problem, which means developers can
approach challenges in a way that reflects their unique perspective.

● Personal Expression: Just like an artist leaves their mark on a
canvas, a coder leaves their signature on their code. This could be
through their choice of variable names, the structure of their functions,
or the overall design of their software.

● Di�erent Approaches: Two developers can tackle the same problem
and come up with completely di�erent solutions, both of which are
valid. This diversity in approach is what makes coding so fun, powerful
and flexible.

Bringing Art and Science Together
● Balancing Structure and Flexibility: Good code often strikes a

balance between the rigid structure needed for e�ciency and the
flexibility required for innovation. It’s about knowing the rules (science)
and knowing when and how to bend them (art).

● Continuing to Improve: Like an artist perfecting their work or a
scientist proving their hypothesis, coding is an ongoing process.
Developers write, test, and optimize their code continuously, blending
analytical thinking with creative intuition.

Why This Matters for Developers
● Embrace Your Creativity: As you learn to code, remember that

there’s room for your creativity and unique perspective. Don’t be afraid
to experiment and try new things, even if they don’t work out the first
time. Coding is as much about exploring possibilities as it is about
following rules.

● Learn the Fundamentals, ButMake ThemYour Own:
Understanding the core principles of coding is essential, but how you
apply them is up to you. Your coding journey is a personal one, and the
way you solve problems will evolve as you gain more experience.

As you progress in your coding journey, remember that your ability to think
creatively and approach problems from di�erent angles is just as valuable as
your technical skills.

Coding is an art, and you are the artist—your creativity and unique
perspective are your superpowers.

JavaScript

JavaScript

JavaScript

More about variables
In Level 1-1, we discussed variables as containers for data and explored the
seven basic data types in JavaScript: strings, numbers, booleans, null,
undefined, symbols, and BigInt.

let myVariable;
myVariable = "Code Accelerator"; // String (text)
myVariable = 2024; // Number
myVariable = BigInt(2^53); // BigInt (for big numbers)
myVariable = true; // Boolean (true or false)
myVariable = Symbol("Code Accelerator"); // Symbol
myVariable = null; // null(empty value)
myVariable = ""; // Undefined (no value yet)

In Level 1-2, understanding the concepts behind variables—especially
those declared with var, let, and const—is going to be incredibly important
as wemove forward.

In the last lesson, we talked about how the keyword let can be used to
declare or initialize variables.

// declare a variable namedmyBootcamp
let myBootcamp;

// initialize a variable namedmyBootcamp

let myBootcamp = "Code Accelerator";

In Level 1-2, we’ll deepen our understanding of variables by focusing on two
important aspects: declaring and initializing variables using let and const,
and understanding the di�erences between them.
Then we’ll talk about another keyword for creating variables called var.

JavaScript

JavaScript

Declaring Variables with let
What DoesDeclarationMean?When you declare a variable, you are
essentially telling JavaScript to create a space in memory to store data.
However, at this point, the variable doesn’t have a value yet—it’s just an
empty container.

// declare a variable namedmyBootcamp
let myBootcamp;

Here, myBootcamp is declared but not yet initialized, meaning it exists in memory but doesn’t hold any value.

Initializing Variables with let
What Does InitializationMean? Initialization occurs when you assign a
value to a previously declared variable. This is the point where the empty
container (the variable) actually starts holding something.

// initializing a variable namedmyBootcamp
myBootcamp = "Code Accelerator";

Now, myBootcamp holds the value "Code Accelerator". We’ve taken our declared variable and given it a purpose.

JavaScript

JavaScript

JavaScript

Declaring and Initializing in One Step
CombinedDeclaration and Initialization: Oftentimes, you’ll just declare
and initialize a variable in a single step for convenience and clarity.

// declaring AND initializing a variable namedmyBootcamp
let myBootcamp = "Code Accelerator";

This is a common practice, especially when you already know the value you want the variable to hold.

Understanding const
Introduction to const: While let allows you to declare variables that can be
reassigned later, const is used for variables that should not be reassigned
after their initial value is set. This makes const ideal for values that should
remain constant throughout your code nomatter what.

// initializing a constant variable and trying to reassign it
const pi = 3.14159;
pi = 3.14; // Output: TypeError: Assignment to constant variable.

Here, pi is a constant, meaning you cannot reassign pi to another value later in your code. If you try to do so, JavaScript
will throw an error.

// declaring a constant variable without a value
const pi; // Output: SyntaxError: Missing initializer in const declaration

You also can't declare a constant without giving it a value in the declaration.

Use Cases
● Use let when you expect the value of a variable to change over time.

● Use const when you know that a variable’s value should remain
constant and unchanged.

Best Practices
● Use const first. As a best practice, many developers recommend

using const when declaring variables and only using let when you
know the value will need to change.

This approach helps prevent errors (called bugs) that would be
caused by unintentional reassignment.

● Clarity and Intent. Using const by default makes your code clearer
andmore readable, as it clearly indicates which variables should
remain unchanged.

You did it!
Understanding how and when to use let and const is your new superpower
as wemove deeper into JavaScript. These concepts help you control the
flow of your code andmanage data e�ectively, especially as your programs
becomemore complex.

In Level 1-2, we’ll explore how these principles apply in practice through our
Tic-Tac-Toe game. You’ll see how careful management of variables can lead
to cleaner, more reliable code, and you’ll gain a deeper appreciation for the
role of variables in programming.

Next up, we’ll dig into the concept of hoisting, which is closely related to how
variables are declared and initialized. Understanding hoisting will give you
further understanding of how JavaScript handles your code under the hood.

Introduction to var
In early versions of JavaScript, the only way to declare variables was by
using the var keyword.

But var behaves di�erently from let and const in ways that can be confusing,
especially for beginners.

Understanding these di�erences is the next coding superpower you’ll unlock
as you progress in your coding journey.

UnderstandingWhere Your Variables Can
Be Used (Introducing "Scope")
When you create a variable using var, where you place it in your code
determines where you can use it. This is known as the variable's scope.

● If you create the variable outside of any function, it’s said to be in the
global scope. This means it can be used anywhere in your entire
program. Think of it as being available to everyone, everywhere.

● If you create the variable inside a function, it’s in the function scope.
This means it can only be used within that specific function. Imagine it
as a special tool that only works inside one room (the function) and
can't be taken outside.

Unlike let and const, which are block-scoped (they only work within blocks
which are smaller sections of your code, like loops or if statements), var is
more flexible—it works throughout the entire function or your entire program
(depending on where you declare it).

Redeclaration with var
var allows you to redeclare a variable within the same scope without causing
an error. This can lead to unexpected behavior and bugs if you’re not careful.

JavaScript

JavaScript

var myVariable = "Code Accelerator";
var myVariable = "New"; // No error, `myVariable` is now "New"
console.log(name); // Output: "New"

Understanding Redeclaration with let
When you use let to create a variable, there’s an important rule to remember:
You can’t declare the same variablemore than once in the same area of
your code.

● NoRedeclaration in the SameScope. If you’ve already created a
variable with let in a certain scope (like inside a function or a loop),
trying to create another variable with the same name in that same
scope will cause an error.

● Why Is This Useful? This rule helps prevent mistakes. It stops you
from accidentally overwriting a variable that you’ve already created,
which canmake your codemore reliable and easier to understand.

let myVariable = "Code Accelerator";
let myVariable = "New"; // SyntaxError: Identifier 'myVariable' has already been
declared

Unlike var, which allows you to create (or redeclare) the same variable name
multiple times in the same scope (which can lead to confusion and bugs), let
is stricter.

That’s why using let and const helps you keep your variables organized and
avoids unintended bugs.

JavaScript

Understanding Hoisting (Moving Variables
To The Top of the Scope)
In JavaScript, there's a behind-the-scenes behavior called hoisting that
a�ects how your code runs.

Imagine that JavaScript reads through your code before it actually runs it.

During this reading process, it finds all the places where you declare
variables and functions, and it moves those declarations to the top of their
scope or section of code (like to the top of a function or your entire program).

This doesn’t change the order of your code, but it does change when
JavaScript becomes aware of your variables and functions.

HowThis A�ects var.With var, this means you can use a variable before it’s
actually declared in your code. However, because only the declaration is
moved to the top, not the assignment, the variable won’t have its value yet.

The variable will read as undefined until we get to the line where you actually
assigned it a value.

console.log(x); // Output: undefined
var x = 5;
console.log(x); // Output: 5

In this example, even though var x = 5; appears after the first console.log(x);, JavaScript knows about` `x when the code
runs because it moved the declaration to the top. But since the value assignment happens later, x is undefined at first.

Hoisting with var vs. let and const
We’ve talked about how JavaScript moves variable declarations to the top of
their section of code before running the code. This works a bit di�erently
depending on whether you use var, let, or const.

var As wementioned, var lets you use a variable before it’s declared in your
code because JavaScript moves the declaration to the top. However, since

JavaScript

JavaScript

only the declaration gets moved and not the assignment, the variable will be
undefined until you actually give it a value.

// JavaScript moves the declaration here: var x;
console.log(x); // Output: undefined
var x = 5; // behaves like a redeclaration
console.log(x); // Output: 5

let and const: When let and const are also hoisted, they behave di�erently.
Even though their declarations are also moved to the top, you can’t use
these variables until the code actually reaches the line where they are
declared. This creates what’s called a temporal dead zone—a fancy way of
saying you can’t use the variable before it’s properly declared.

console.log(y); // Error: Cannot access 'y' before initialization
let y = 10;
console.log(y); // Output: 10
console.log(z); // Error: Cannot access 'z' before initialization
const z = 20;
console.log(z); // Output: 20

Why This Matters
So, here’s what we want you do during Code Accelerator:

● Use const first!

● Only use let when you expect the value of a variable to change over
time.

● Do not use var at all.

JavaScript

var is more forgiving but can lead to bugs if you’re not careful, because it
allows you to accidentally use a variable before it’s given a value.

let and const help prevent mistakes by making sure the code can’t use the
variable until it’s actually declared in the code.

Using let and const is safer and helps you write more reliable code because
you can be sure that the variable has been properly set up before your code
tries to use it.

Understanding Functions in JavaScript with
Simple Examples
Before we get into building our Tic-Tac-Toe game, let's explore the concept
of functions with some everyday examples. These examples will help you
understand how functions work and why they are so useful in coding.

Example #1: A Function toMake a Sandwich

Imagine you’re in the kitchen, and you want to make a sandwich. You can
think of a function as a set of instructions for making that sandwich. Instead
of giving each instruction every time you want to make a sandwich, you can
create a function that performs all the steps for you.

Defining Functions
Here is the format you use to write any function:

function functionName(parameter1, parameter2, parameter3) {
return parameter1 + parameter2;

}

And here’s how youmight write a function to make a sandwich:

JavaScript

function makeSandwich(breadType, filling) {
return "Here is your " + filling + " sandwich on " + breadType + " bread!";

}

● Function Name: makeSandwich is the function name. In a perfect
world, the name of the function tells you what the function is supposed
to do.

● Parameters: breadType and filling are the parameters, or data values
that the function needs to do its work. With the function
makeSandwich the parameters are the ingredients you need to make
the sandwich. These are like inputs you give to the function.

● Return Value: A function sends information up to your code. When a
function sends information up to the code it is called a return value.

ThemakeSandwich function combines the bread and filling and then
returns a string data type telling you what kind of sandwich youmade.

JavaScript

JavaScript

Using the makeSandwich Function
Now, whenever you want to make a sandwich, you just call the function and
give it the ingredients:

let myLunch =makeSandwich("whole wheat", "turkey");

console.log(myLunch); // Output: "Here is your turkey sandwich on whole wheat
bread!"

This is much easier than writing out all those steps every time we want to
describe the process of making a sandwich!

Example 2: A Function to Calculate the Area of a Rectangle

Functions are also great for performing calculations. Let’s say you need to
calculate the area of a rectangle in di�erent situations. Instead of writing the
formula over and over, you can create a function to do it.

Defining a calculateArea Function
Here’s a simple function to calculate the area of a rectangle:

function calculateArea(length, width) {
return length * width;
}

● Function Name: calculateArea tells you what the function does—it
calculates the area.

● Parameters: length and width are the inputs you need to perform the
calculation.

JavaScript

● Return Value: The function multiplies the length by the width and
returns the area.

Using the Function
Now, you can easily calculate the area of any rectangle in one step:

let area = calculateArea(5, 3);
console.log(area); // Output: 15

This function makes your code shorter, clearer, and easier to update if you
need to change the way you calculate the area.

The console Object and the log Method
Before we dive deeper into understanding functions, let’s briefly revisit what
a function is by looking at something you’ve already been using: the
console.log statement.

This is a great example of how functions work in JavaScript.

The console Object
In JavaScript, the console is a built-in object that provides access to the
browser’s debugging console. It has several methods that allow you to
interact with the console, and one of the most commonly usedmethods is
log.

The log Method
● What is log? log is a method (or function) of the console object. When

you call console.log(), you’re using this method to print messages,
values, or other information to the console.

JavaScript

● HowDoes ItWork?Whenever you write console.log("Hello, world!");
you’re basically saying: “Hey JavaScript engine, run this log function
and pass it the messageHello, world! to display in the console.”

How console.log Relates to Defining
Functions

● Function Name: In this case, log is the name of the function.

● Parameters: The message or value you want to print is the parameter
you pass into the function. "Hello, world!" is the parameter or input that
the console.log function uses to perform its task of printing to the
console.

● Return Value: While console.log doesn’t return a value that you can
use later, it performs an action—outputting text to the console.

Here’s a breakdown of how it looks:

console.log("Hello, world!"); // Output: ??

● console: The object that holds the log method.

● log: The method or function that performs the action.

● "Hello, world!": The parameter that gets passed into the function.

Why This Matters
By using console.log, you’ve already been working with a function in
JavaScript. This example shows how functions take inputs (parameters), do
something with them, and (sometimes) give something back.

Functions like console.log are incredibly powerful because they let you

JavaScript

reuse the same code with di�erent inputs, making your codemore e�cient
and easier to manage.

Understanding how console.log works gives you a solid foundation to
explore more complex functions, like the ones we’ll encounter in the
Tic-Tac-Toe game.

Functions are everywhere in JavaScript, and learning about them is an
important step to becoming a confident coder.

Functions will be your go-to tool for solving problems in a structured,
repeatable way as you continue learning JavaScript.

Introducing Hoisting and Function Scope
with Simple Functions
It's important to revisit our understanding of how JavaScript handles
functions, especially in terms of hoisting and function scope. These
concepts will help you understand why certain things happen when you run
your code.

Do You Remember What Hoisting Is?
Hoisting is the behavior in JavaScript where function and variable
declarations are moved to the top of their containing scope (like the top of a
script or a function) before the code is actually executed. This means you
can call a function before you’ve even written it in your code, and it will still
work!

A Function to Make Co�ee
Let’s say you want to make a cup of co�ee. Here’s a function that does that:

console.log(makeCo�ee()); // Output: "Your co�ee is ready!"

JavaScript

function makeCo�ee() {
return "Your co�ee is ready!";
}

How ItWorks: Even though the console.log comes before the makeCo�ee
function in the code, JavaScript “hoists” the function declaration to the top.

So, when the code runs, JavaScript already knows about the makeCo�ee
function, and everything works fine.

DoYouRememberWhat Scope Is?
Scope says which section in your code a variable or function is accessible.

When we talk about function scope, it means that variables or functions
declared inside a function are only accessible within that function—they are
hidden from the rest of the program.

Example: A Function to Calculate Discount

Imagine you’re writing a function to calculate a discount on a product:

function calculateDiscount(price) {
let discount = 0.1; // 10% discount
return price - (price * discount);
}

console.log(calculateDiscount(100)); // Output: 90
console.log(discount); // Error: discount is not defined

How ItWorks:

● The discount variable is declared inside the calculateDiscount
function. This means it only exists within that function—it has function
scope.

● If you try to access discount outside the function, like in the second
console.log, you’ll get an error because discount is not visible outside
of calculateDiscount. This is a good thing!

The var Quirk
Now, here’s one of the many interesting quirks about JavaScript coding:

● What IfWeHadUsed var Instead?
If we had used var instead of let to declare discount, it would have
function scope, so the discount variable would still not be accessible
outside the function.

However, in some other cases, var behaves di�erently. For example, if
var was used in a loop inside the function, the variable might
accidentally "leak" outside of the loop, leading to unexpected behavior.

● WhyWeAvoid var:
This is one of the reasons why developers should use let and
const—they help avoid these kinds of mistakes by clearly defining the
scope of function variables, making your codemore predictable and
easier to understand.

Arrays and Indexed Collections
In Level 1-1, we introduced the idea of arrays as a way to group related items
together in an organized list.

Think of an array like a bookshelf, where each book (or item) has its own
specific spot on the shelf.

Arrays are one of the most basic tools you'll use in JavaScript, but they are
also incredibly powerful.

They help you keep your data organized, make your codemore e�cient, and
allow you to domore with less e�ort. Understanding how to use arrays is a
JavaScript superpower that you’re going to want to unlock.

JavaScript

Arrays keep everything in a specific order.

Imagine you have a list of your favorite fruits or a list of scores from a game.
Instead of writing down each fruit or score separately, you can put them all
together in an array.

Each item in an array has a number, called an index, which tells you its
position in the list.

JavaScript is a 0-index programming language. That means the first item
in an array is at index 0, the second in an array is at index 1, and so on.

Arrays make it easy to:

● Store a List of Items: Whether it's names, numbers, or anything else,
you can keep everything in one organized list.

● Access ItemsQuickly: By using the index number, you can easily
find or change any item in the list.

● Loop Through Items: If you want to do something with each item (like
printing them out or adding them up), arrays let you go through the list
automatically.

Here’s an example to make it clearer:

let fruits = ["apple", "banana", "cherry"];

In this array:

● "apple" is the first item, so it's at index [0].
● "banana" is the second item, so it's at index [1].
● "cherry" is the third item, so it's at index [2].

You can easily get any item by its index:

JavaScript

console.log(fruits[1]); // This will print "banana"

Loops
Arrays are used with loops to perform the same operation on each element
(the term “element” is the developer term for any item in an array).

Let’s say you want to print out every element in the fruits variable.

JavaScript

Using a for Loop
Here’s an example to make it clearer:

let fruits = ["apple", "banana", "cherry"];
for (let i = 0; i < fruits.length; i++) {
console.log(fruits[i]);
}
/*
Output:
apple
banana
cherry
*/

Understanding the for Loop and Array
Length
Before we dive into what’s happening in the code, let’s break down the key
parts:

● Array Length. Every array in JavaScript has a length property, which
tells you howmany items are in the array. In our case, fruits.length is 3
because there are three fruits in the list: "apple", "banana", and
"cherry".

● Loop Structure. A for loop is made up of three parts:
1. initializer: The initializer section of the for loop can be used to

count the turns in a loop. Here, our loop starts by setting i to 0.

2. condition: The loop keeps running as long as whatever is in the
condition section equals true. In this case, the loop will continue
to run—turn after turn—as long as i < fruits.length (which means
the loop will continue to loop over and over again if i is less than

the 3 items in the array length).

3. increment: The increment section of the for loop can be used to
count the turns in a loop. i++means i = i + 1. So after each run of
the loop, i increases by 1, then wemove on to the next item in the
array.

How the LoopWorks
Now, let’s talk about what happens when the loop runs:

The loop kicks o� with i starting at 0. It keeps going as long as i is less than
the total length of the fruits array (which has 3 items in it).

Each time the loop runs (and it runs three times in this case), fruits[i] grabs
the fruit at the current spot in the list, and console.log(fruits[i]) prints that fruit
to the console for you to see.

So, as i goes from 0 to 2, the loop prints each fruit in the order they appear in
the array.

On the fourth turn, i becomes 3, which is equal to the length of the array.

At this point, the loop checks the condition (i < fruits.length), sees that it’s no
longer true, and stops running.

That’s why the loop only prints three fruits—one for each time it runs.

JavaScript

Introduction to Comparison
In coding, comparing values is an important concept that helps your code
make decisions.

It’s like asking your program a question: "Is this value smaller than that one?"
or "Are these two things the same?" These comparisons guide your code to
take di�erent actions based on the answers.

One of the simplest andmost straightforward comparisons is the < or less
than operator.

This operator is like asking your code, "Is this value smaller than that one?"
It’s a crucial part of how your codemakes decisions and controls what
happens next.

You’ve already seen this operator in action when we used it in our for loop.
Let’s take a moment to see how it works and why it’s so important.

The Less Than Operator in Action
Here’s an example to make it clearer:

let fruits = ["apple", "banana", "cherry"];
for (let i = 0; i < fruits.length; i++) {
console.log(fruits[i]);
}

What’s Going On Here?
● i < fruits.length: This part of the loop checks if i (our loop counter) is

still less than the total number of items in the fruits array.

● Why It Matters. This comparison keeps the loop running the right
number of times. As long as i is less than the length of the fruits, the

loop continues. Once i reaches the array’s length, the loop stops,
making sure we don’t try to access items that aren’t there.

Connecting the Dots
Understanding operators is a basic but powerful superpower that keeps your
code in check.

It helps guide your loops, ensuring they do exactly what you need without
going too far.

In our for loop, this simple comparisonmade sure we processed every fruit
in the array, one by one, and then stopped when we were done.

This simple check is a great introduction to how programming lets you
evaluate and compare values to make decisions. And just like you can check
if one value is less than another, you can also check if two values are equal.
That’s where equality comparisons come in.

From < to Equality Comparisons
Just like the < operator helps you determine if a value is smaller, equality
comparisons let you check if two values are the same.

In JavaScript, there are two ways to compare for equality: loose equality
(==) and strict equality (===). Each one has its own special way of
working, depending on how precise you want to be.

Loose Equality (==)
Loose equality is like asking, "Are these values equal, even if they’re not
exactly the same type?" JavaScript might try to convert the values to the
same type before making the comparison.

JavaScript

JavaScript

console.log(5 == "5"); // Output: true

What’s Happening Here?
● JavaScript sees that one value is a number and the other is a string, so

it converts the string "5" to the number 5 before comparing.
● Since both values are now 5, the comparison returns true.

Strict Equality (===)
Strict equality asks a slightly di�erent question: "Are these values exactly the
same, with no type conversion?" With strict equality, JavaScript compares
both the value and the type as they are.

console.log(5 === "5"); // Output: false

What’s Happening Here?
● This time, JavaScript doesn’t try to change anything. It sees that one

value is a number and the other is a string, so it says they’re not the
same.

● The comparison returns false because the types don’t match.

Why It Matters
Understanding these di�erent types of comparisons helps you write code
that does exactly what you expect. Just like the < operator helps you figure
out di�erences in value, equality operators help you check if values match
up the way you want them to.

JavaScript

JavaScript

Practical Example: Checking User Input

Imagine you’re building a simple login system. You want to check if the
user’s input matches the correct password.

Loose Equality:

let correctPassword = "1234";
let userInput = 1234;

console.log(userInput == correctPassword); // Output: true

Even though the user entered a number and the password is stored as a string, loose equality says they match
because JavaScript converts the number to a string data type.

Strict Equality:

let correctPassword = "1234";
let userInput = 1234;

console.log(userInput === correctPassword); // Output: false

Strict equality, however, sees that one is a string and the other is a number, so it says they don’t match.

In most cases, especially with something important like passwords, you’d
want to use strict equality to make sure everything matches up perfectly.

Understanding the di�erence between loose and strict equality in JavaScript
is key to writing reliable code.

While loose equality can be handy in some situations, it’s often better to use
strict equality to avoid unexpected results. By being clear about what you’re
comparing, you’ll make your codemore predictable and easier to debug.

Remember, in most cases, it’s safer to use === to make sure that both the
value and the type match exactly.

JavaScript

JavaScript

Bringing It All Together: The .every Array
Method
Now that you have a solid understanding of loops, comparisons, and arrays,
it’s time to bring these concepts together by exploring a powerful tool in
JavaScript: the .every array method.

This method allows you to check if every item in an array meets a certain
condition, making your codemore e�cient and easier to read.

What is the .every Method?
The .every method is a built-in function that you can use on arrays. It tests
whether all elements in the array pass a test (that you define in a function)
and returns true if they do, or false if even one element fails the test.

Example: Checking if All Numbers are Positive

Let’s say you have an array of numbers, and you want to check if every
number in the array is positive.

let numbers = [1, 2, 3, 4, 5];

let allPositive = numbers.every(function(number) {
return number > 0;
});

console.log(allPositive); // Output: true

let numbers = [1, 2, 3, -4, 5];

let allPositive = numbers.every(function(number) {

JavaScript

return number > 0;
});

console.log(allPositive); // Output: false

How It Works
● TheArray: We start with an array of numbers: [1, 2, 3, 4, 5].
● The .everyMethod: We use the .every method to check if every

number in the array is greater than 0.
● The Function: Inside .every, we define a function that takes each

number and checks if it’s greater than 0. If all numbers pass this test,
.every returns true; if any number fails, it returns false.

Why Use .every?
Using .every simplifies your code, especially when you need to check all
items in an array against the same condition. Instead of writing a for loop and
manually checking each element, .every does it all for you in a single line.

Practical Example: Validating User Input

Imagine you’re writing a program that checks if every input in a form is filled
out correctly. You can use .every to make sure every field in an array of form
inputs is not empty.

let formInputs = ["Code", "Accelerator", "learn@codeaccelerator.org"];

let allFilled = formInputs.every(function(input) {
return input !== "";
});

console.log(allFilled); // Output: true

How It Works
● We have an array of form inputs (e.g., a first name, last name, and

email).
● The .every method checks if every input is not an empty string.
● If all inputs are filled out, .every returns true; otherwise, it returns false.

Connecting the Dots
Let’s bring everything together with a recap of how the .every method ties
into what you’ve already learned:

1. Arrays: You understand that arrays are organized collections of items.
2. Loops: You know how to loop through an array with a for loop to check

each item.
3. Comparisons: You’ve learned how to compare values, like checking if

a number is positive or if a string is not empty.

The .every method is a function that we can use on arrays that combines all
of these skills into one powerful tool that simplifies your code andmakes it
more readable.

You’ve Come a LongWay: Let’s Make A
Tic-Tac-Toe Game
Take amoment to think about howmuch you’ve learned. At first, things like
arrays, loops, and comparisons might have seemed a bit tricky, but now
you’re using them like a pro.

You’ve been building your skills step by step, and now we’re ready to use
everything we’ve learned to tackle a fun challenge: coding a tic-tac-toe
game. So far:

JavaScript

● Arrays: You’ve learned how to organize data in lists, and how to use
an array to represent something.

● Loops: You know how to go through each item in an array, making
sure nothing gets missed.

● Comparisons: You can check if values are what you expect, and use
those checks to decide what your code should do next.

HowOther Developers Did It
One of the best ways to become a confident coder is to study how other
developers solved problems. Let’s take a look at how some developers
approached the challenge of creating a Tic-Tac-Toe game and the di�erent
ways they went about it.

Example 1: A Detailed Solution onGeeksforGeeks

OnGeeksforGeeks, there’s a solution to the Tic-Tac-Toe game that spans
427 lines of JavaScript. This developer took a detailed approach, writing a
lot of code to handle all the di�erent parts of the game. Here’s a small
snippet of their solution:

function myfunc_4() {
if (flag == 1) {
document.getElementById("b2").value = "X";
document.getElementById("b2").disabled = true;
flag = 0;

}
else {
document.getElementById("b2").value = "0";
document.getElementById("b2").disabled = true;
flag = 1;

}
}

You can check out the full solution here: GeeksforGeeks Tic-Tac-Toe Game

Example 2: A Simpler Approach onMedium

https://www.geeksforgeeks.org/simple-tic-tac-toe-game-using-javascript/

JavaScript

Another web developer, Canan Korkut, wrote a solution with only 70 lines of
JavaScript. Her approach is more streamlined, focusing on the essentials of
the game. Here’s a piece of her code:

function checkTie(){
for(let i = 0; i < squares.length; i++) {
if(squares[i].textContent === '') {
return false;

}
}
return true;

}

You can read her full tutorial here: Medium Tic-Tac-Toe Tutorial

https://medium.com/@canankorkut1/how-to-create-a-tic-tac-toe-with-html-css-and-javascript-10a25fddd356

JavaScript

What These Solutions Have in Common
If you explore these tutorials, you’ll notice that while these developers took
very di�erent approaches, there’s something they both have in common:
they use a JavaScript control structure called the if statement.

if lets your codemake decisions, which is important in games like
Tic-Tac-Toe.

Unlocking the if Statement Superpower
Both of these solutions rely on the if statement to check conditions and
decide what the game should do next—whether it’s placing an "X" or an "O",
or checking if someone has won. As you continue learning, you’ll see just
how powerful the if statement is, and you’ll be using it to make your own
games and projects come to life.

Understanding if Statements
The if statement is one of the most important tools in your programming
toolbox. It allows your code to make decisions, which is key to building
anything interactive, like a game or a dynamic website.

With if statements, you can tell your program, "If this condition is true, then
do this. Otherwise, do something else."

The Basics of if Statements
At its core, an if statement checks whether something is true or false. If the
condition you’re checking is true, the code inside the if block runs. If it’s false,
the code is skipped, and your programmoves on.

Example: Checking a Number

let number = 10;

if (number > 5) {
console.log("The number is greater than 5");
}

What’s HappeningHere?

● We’ve got a number, 10, and we want to check if it’s greater than 5.
● The if statement checks this condition: number > 5.
● Since 10 is indeed greater than 5, the code inside the if block runs, and

you see the message "The number is greater than 5" printed to the
console.

Why if Statements Are So Powerful
The if statement is like a fork in the road for your code. It lets your program
decide which path to take based on the conditions you set. This is what
makes interactive programs possible—your code can react di�erently
depending on the input it gets or the state of the game.

Connecting The Dots
Understanding if statements is a big step forward in your coding journey.
They allow you to control the flow of your program andmake it do di�erent
things based on di�erent conditions. Whether you’re checking if a player has
won a game of Tic-Tac-Toe or deciding which message to show on a
website, if statements give you the power to make your code smart and
responsive to changing conditions.

As you continue learning, you’ll see how important your if superpowers
become in bringing your projects to life.

You’re Ready!

JavaScript

Now that we’ve discussed if statements, loops, comparisons, and arrays,
you’ve got all the tools you need to understand the first version of our
Tic-Tac-Toe coding challenge solution. Let’s bring everything together by
thinking through the problem with a bit of design thinking.

Design Thinking
Let’s start by reviewing what we know about Tic-Tac-Toe:

1. TwoPlayers: The game is played by two players, X and O.
2. Nine Spaces: There are nine spaces on the board where a player can

place their mark.
3. Player XGoes First: The game always starts with Player Xmaking

the first move.
4. EightWays toWin: There are only eight di�erent ways that a player

can win (three rows, three columns, and two diagonals).

WeCanCode This!

We know that there are nine cells where players can place their marks, so
let’s represent the Tic-Tac-Toe board using an array with nine elements:

let board = [null, null, null, null, null, null, null, null, null];

Each element in this array lines up to a cell on the board, with the first
element (board[0]) representing the top-left corner and the last element
(board[8]) representing the bottom-right corner.

Remember, arrays in JavaScript start with an index of 0, so the cells are
indexed from 0 to 8.

RepresentingWinning Patterns
Now that we’ve set up the board, we can think about how a player wins. A
player wins by getting three of their marks in a row, either horizontally,
vertically, or diagonally.

Example: Vertical Win in theMiddle

One way to win is by having three marks in a column. For example, if a player
places their marks in the middle column:

JavaScript

They would occupy the cells with indexes 1, 4, and 7:

// Middle column winning combination
[1, 4, 7]

Example: DiagonalWin fromUpper-Right to Lower-Left

Another way to win is by getting three marks diagonally. For example, if a
player places their marks from the upper-right corner to the lower-left corner:

JavaScript

JavaScript

They would occupy the cells with indexes 2, 4, and 6:

// Diagonal winning combination from upper-right to lower-left
[2, 4, 6]

Putting It All Together
By representing the board as an array and understanding the indexes of
each cell, we can easily track where each player places their marks.

Now, we can define all winning combinations by listing the indexes that need
to be occupied by the same player’s mark:

const allWinningCombinations = [
[0, 1, 2], // Top row
[3, 4, 5], // Middle row
[6, 7, 8], // Bottom row
[0, 3, 6], // Left column
[1, 4, 7], // Middle column

JavaScript

[2, 5, 8], // Right column
[0, 4, 8], // Diagonal from top-left to bottom-right
[2, 4, 6] // Diagonal from top-right to bottom-left
];

Believe it or not, we have just built a large part of our solution.

The cool thing about design thinking is that you can solve a lot of coding
problems in your mind before you start coding.

Now that we know all of the winning combinations, we can design the code
that we use to check for a win.

First, we’ll set up a board that has a winning combination. Let’s set up a
board where Player O wins diagonally:

let board = [null, null, null, null, null, null, null, null, null];

// Example board state (Xs and Os):
// null X O
// X O null
// O X null

board = [
null, 'X', 'O',
'X', 'O', null,
'O', 'X', null
];

JavaScript

Remember the for loop?
With all the pieces in place, we can now use a for loop to go through each of
the winning combinations and check if any of themmatch the current board
state. This is where everything you’ve learned about loops and comparisons
comes together to complete the Tic-Tac-Toe solution!

function checkForWin(player) {
const allWinningCombinations = [
[0, 1, 2], // Top row
[3, 4, 5], // Middle row
[6, 7, 8], // Bottom row
[0, 3, 6], // Left column
[1, 4, 7], // Middle column
[2, 5, 8], // Right column
[0, 4, 8], // Diagonal from top-left to bottom-right
[2, 4, 6] // Diagonal from top-right to bottom-left
];

// Loop through each winning combination
for (let i = 0; i < allWinningCombinations.length; i++) {
const combination = allWinningCombinations[i];
const a = combination[0];
const b = combination[1];
const c = combination[2];

// Check if the player occupies all three spots in the current winning combination
if (board[a] === player && board[b] === player && board[c] === player) {
return true; // Player O has a winning combination
}
}

return false; // No winning combination found
};

JavaScript

// Example board state where Player O wins diagonally
let board = [
null, 'X', 'O',
'X', 'O', null,
'O', 'X', null
];

// Check if Player O has won
if (checkForWin('O')) {
console.log("Player O wins!");
} else {
console.log("No winner yet.");
};

Let's Walk Through the Code Together, Line
by Line
Now that we've written the function to check if Player O has a winning
combination, let's break it down line by line. This will help you understand
how each part of the code works together to solve the Tic-Tac-Toe
challenge.

1. Function Definition

function checkForWin(player) {

What’s Happening?:We’re defining a new function called checkForWin.
This function will take one argument, player, which will be the player we’re
checking for a win (in our case, Player O, represented as 'O').

JavaScript

JavaScript

2. DefineWinning Combinations

const allWinningCombinations = [
[0, 1, 2], // Top row
[3, 4, 5], // Middle row
[6, 7, 8], // Bottom row
[0, 3, 6], // Left column
[1, 4, 7], // Middle column
[2, 5, 8], // Right column
[0, 4, 8], // Diagonal from top-left to bottom-right
[2, 4, 6] // Diagonal from top-right to bottom-left
];

What’s Happening?:We’re creating a list (an array) of all possible winning
combinations on the Tic-Tac-Toe board. Each combination is represented
by a smaller array of three numbers, where each number corresponds to a
position on the board. For example, [0, 1, 2] represents the top row.

3. Loop Through EachWinning
Combination

for (let i = 0; i < allWinningCombinations.length; i++) {

What’s Happening?:We start a for loop that will go through each winning
combination one by one. The loop will run as many times as there are
winning combinations, which is 8 in this case. The variable i will keep track of
which combination we’re currently checking.

JavaScript

JavaScript

4. Accessing the Current Combination

const combination = allWinningCombinations[i];
const a = combination[0];
const b = combination[1];
const c = combination[2];

What’s Happening?:

combination = allWinningCombinations[i];: We’re taking the current
winning combination from our list and storing it in a variable called
combination.

a = combination[0]; b = combination[1]; c = combination[2];: We’re
breaking down this combination into three separate variables, a, b, and c,
which represent the three positions on the board that make up this winning
combination.

5. Checking If the Player Occupies All Three
Spots

if (board[a] === player && board[b] === player && board[c] === player) {

What’s Happening?:Here, we’re using an `if` statement to check if the
player has their mark ('O' in this case) in all three positions of the current
combination (a, b, and c). The && operator means "and," so we’re asking,
"Does the player have their mark in position a and position b and position
c?"

JavaScript

JavaScript

JavaScript

6. Return true if a Winning Combination is
Found

return true;

What’s Happening?: If the player occupies all three positions in this
combination, we return `true` from the function, meaning the player has won.

7. End of the Loop and Return `false`

}
return false;

What’s Happening?: If the loop finishes checking all the combinations and
doesn’t find a winning one, we return `false`, meaning there is no winner yet.

8. Example Board State and Function Call

let board = [
null, 'X', 'O',
'X', 'O', null,
'O', 'X', null
];

if (checkForWin('O')) {
console.log("Player O wins!");
} else {
console.log("No winner yet.");
}

What’s Happening?:We set up a sample board where Player O has a
diagonal win, then we call checkForWin('O') to see if Player O has won.
Depending on the result, we print either "Player O wins!" or "No winner yet."

Wow! You've Come So Far
Take amoment to appreciate howmuch progress you've made. When you
started, concepts like arrays, loops, and comparisons might have felt new
and challenging, but look at where you are now! You've just walked through
the process of building a key part of a Tic-Tac-Toe game, breaking down the
code step by step, and understanding how it all fits together.

What You’ve Accomplished
Mastered Arrays:You’ve learned how to represent complex structures, like
a Tic-Tac-Toe board, using arrays.

Controlled Logic with Loops:You’ve used loops to e�ciently check
through possibilities, like finding a winning combination on the board.

MadeDecisionswith `if` Statements: You’ve seen how `if` statements help
your codemake decisions, checking conditions and responding accordingly.

Keep Going
Coding is a journey, and you’re on a great path. Keep challenging yourself
with new projects, explore di�erent ways to solve problems, andmost
importantly, have fun with it! Every line of code you write is another step
forward in your journey to becoming a confident and skilled developer.

You’ve come so far, and there’s so muchmore you can achieve. Keep up the
amazing work, and remember—there’s no limit to what you can create with
code!

Homework: Grow Your Superpowers
Now that you’ve made incredible progress, it’s time to put your knowledge to
the test with some hands-on practice. This homework will help you reinforce
what you’ve learned and give you the confidence to tackle coding challenges
on your own.

1. Create Your Own Tic-Tac-Toe Board

Task:Write a JavaScript program that sets up a Tic-Tac-Toe board as an
array and allows two players (X and O) to take turns placing their marks.

Goal: The program should display the board in the console after eachmove,
showing the current state of the game.

Hint:Use a loop to keep the game going until all spots are filled or a player
wins.

2. Check for aWinner

Task:Expand your Tic-Tac-Toe program by adding a function that checks
for a winner after eachmove. Use the `checkForWin` function you learned
about, but try writing it yourself without looking back at the notes.

Goal:Your program should announce the winner or declare a tie if all spots
are filled and no one has won.

Hint:Remember the winning combinations and use a loop to check each
one.

3. Experiment with NewWinning Combinations

Task:Modify the game to allow a larger board, like a 4x4 grid. Adjust your
checkForWin function to find winning combinations on this bigger board.

Goal: The game should still correctly identify winners, even with the new
board size.

Hint: You’ll need to addmore winning combinations to your list and think
about how to check them.

4. Reflection

Task:Write a short paragraph reflecting on what you found easy or
challenging about building the Tic-Tac-Toe game. What did you learn?What
would you like to explore next?

Goal: This reflection will help you identify your strengths and areas where
youmight want to focus more attention.

Extra Challenge: Make It Interactive

If you’re feeling confident, try making your Tic-Tac-Toe game interactive by
allowing players to enter their moves via prompt inputs or even building a
simple web interface using HTML and CSS. This is a great way to see your
code in action and start thinking about how to bring your projects to life on
the web.

This homework is designed to help you build on everything you’ve learned
so far. By working through these tasks, you’ll reinforce your understanding
and gain the confidence to take on evenmore complex challenges.
Remember, practice is key to mastering coding, so dive in and have fun with
these exercises!

What’s Next?
Now that you’ve got the basics down, the sky’s the limit. Whether you’re
looking to build more games, create interactive web pages, or solve complex
coding challenges, you have the tools you need to get started. Remember,
every coder, no matter how advanced, started where you are now—with the
basics. Themore you practice, the more these concepts will become
second nature, and the more creative and powerful your coding will become.

In the next learning session we’re going to pivot to talking about HTML, CSS,
and how we can add user input to the Tic-Tac-Toe game we’re building.

See you there!

